Roll No: Date: __/__/__

St. Claret College

Autonomous, Bengaluru

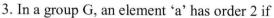
UG END SEMESTER EXAMINATION-MAY 2025 BSC-II SEMESTER MT 224: MATHEMATICS- II

TIME: 3 hours

MAX. MARKS: 80

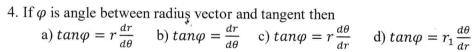
This paper contains THREE printed pages and FOUR parts

Instructions:


- 1. Verify and ensure that the question paper is completely printed.
- 2. Any discrepancies or questions about the exam paper must be reported to the COE within 1 hour after the examination.
- 3. Students must check the course title and course code before answering the questions.

PART-A

Answer ALL questions. Each answer carries ONE mark.


 $[1 \times 10 = 10]$

- 1. What is the inverse of -1 if $G=\{1, -1, i, -i\}$ is a group under multiplication.
 - a) 1
- b) i
- d) None of the above
- 2. Which of the following is a cyclic group.
 - a) (Z, +)
- b) (R, +)
- c)(Z, .)
- d)(0, +)

- b) $a^2 = e$
- d) None of the above

a)
$$tan\varphi = r \frac{dr}{dr}$$

b)
$$tan\varphi = \frac{dr}{dr}$$

c)
$$tan\varphi = r \frac{d\theta}{dr}$$

d)
$$tan\varphi = r_1 \frac{d\theta}{dr}$$

5. How many types of asymptotes are there?

- b) 2
- c) 4

6. The value of c in Rolle's Theorem where $-\frac{\pi}{2} < c < \frac{\pi}{2}$ and $f(x) = \cos x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ is a) 0 b) π c) $\frac{\pi}{2}$ d) $\frac{\pi}{4}$

- b) 1
- c) ∞
- d) $\frac{1}{4}$
- 8. A differential equation is considered to be ordinary if it has
 - a) One dependent variable
 - b) More than one dependent variable
 - c) One independent variable
 - d) More than one independent variable
- 9. The integrating factor of the differential equation $\frac{dy}{dx} + xy = x$ is
- c) e^x
- d) None of the above
- 10. The differential equation Mdx+Ndy=0 will be exact if and only if
 - a) $M_y = N_x = 0$ b) $M_y N_x = 0$ c) $M_x + N_y = 0$

PART-B

Answer any TEN questions. Each answer carries TWO marks.

 $[2 \times 10 = 20]$

- 11. Find the orders of an element of the multiplicative group $\{1, \omega, \omega^2\}$ of cube roots of unity.
- 12. Find all the generators of z_{15} .
- 13. Define right coset and left coset of a group.
- 14. Show that the angle between radius vector and tangent at any point on the curve $r = ae^{\theta cot\alpha}$ is constant.
- 15. For the curve $r = a\theta$ show that $p = \frac{r^2}{\sqrt{r^2 + a^2}}$.
- 16. Show that the radius of curvature in the pedal form is $\rho = r \frac{dr}{dr}$.
- 17. Discuss the continuity of $f(x) = x \sin\left(\frac{1}{x}\right)$ at x=0.
- 18. Verify Rolle's Theorem for $f(x) = x^2 6x + 8$ in [2, 4].
- 19. Evaluate $\lim_{x\to 0} \frac{x-\sin x}{x^3}$
- 20. Find the integrating factor for $\frac{dy}{dx} + \frac{2}{x}y = x^3$.
- 21. Show that the equation $(e^y + 1)\cos x \, dx + e^y \sin x \, dy = 0$ is exact.
- 22. Solve sinpx cosy = cospx siny + p.

PART C

Answer any FOUR questions. Each answer carries FIVE marks.

 $[5 \times 4 = 20]$

- 23. State and prove Lagrange's theorem.
- 24. Show that the pair of the curves $r = a(1 + \cos\theta)$ and $r = b(1 \cos\theta)$ intersects orthogonally.
- 25. Find the pedal equation of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- 26. Discuss the differentiability of the function $f(x) = \begin{cases} x^2, & x \le 3 \\ 6x 9, & x > 3 \end{cases}$ at x = 3.
- 27. Expand f(x) = tanx using Maclaurin's series up to the term containing x^4 .
- 28. Solve $p^2 + 2pycotx y^2 = 0$.

PART D

Answer any THREE questions. Each answer carries TEN marks.

 $[10 \times 3 = 30]$

- 29. a) Prove that the order of every element of a finite group is finite.
 - b) If G is an abelian group prove that $o(ab)=o(ba) \ \forall \ a,b \in G$.
- 30. Trace the curve cissoids, $y^2(a-x) = x^3$, a > 0.
- 31. State and prove Cauchy's Mean Value theorem. Hence verify the theorem for $f(x) = x^3$ and $g(x)=x^2$ in [1,3].
- 32. Solve $p = \tan\left(x \frac{p}{1+p^2}\right)$.
- 33. Find the general and singular solution of (px y)(x py)=2p by using the substitution $x^2 = u$ and $y^2 = v$.
