56
 VI Semester B.A./B.Sc. Examination, Sept./Oct. 2022
 (Semester Scheme)
 (CBCS) (F+R) (2016-17 and Onwards)
 MATHEMATICS - VIII

Time : 3 Hours
Max. Marks : 70

Instruction : Answer all Parts.

PART - A

1. Answer any five questions.
a) Evaluate $\lim _{z \rightarrow 1+2 i}\left(z^{2}+1\right)$.

b) Find the locus of z satisfying $|z-i| \leq 3$.
c) Show that $v=3 x^{2} y-y^{3}$ is harmonic.
d) State Liouville's theorem.
e) Define bilinear transformation.
f) Verify Cauchy-Riemann equations for $f(z)=\sin x \operatorname{coshy}+i \cos x$ sinhy .
g) Find the real root of the equation $x^{3}-4 x+9=0$ in one step by bisection method.
h) Write Euler's modified formula.
PART - B

Answer four full questions.
2. a) Show that $|z+i|^{2}-|z-i|^{2}=2$ represents a real axis.
b) State and prove necessary conditions for a function $f(z)=u+i v$ to be analytic. OR
3. a) Evaluate $\lim _{z \rightarrow \frac{i}{2}}\left[\frac{\left(2 z^{3}-3\right)(4 z+i)}{(i z-1)^{2}}\right]$.
b) Show that $f(z)=\log z$ is analytic and find $f^{\prime}(z)$.
4. a) Find the analytic function $f(z)=u+i v$ given its real part $u=\left(r+\frac{1}{r}\right) \cos \theta$.
b) Show that $u=e^{x} \sin y+x^{2}-y^{2}$ is harmonic and find its harmonic conjugate. OR
5. a) If $f(z)$ is analytic, show that $\left(\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
b) Find the orthogonal trajectory of the family of curves $x^{2}-y^{2}-x=c$.
6. a) If $f(z)$ is analytic with in and on a closed curve C of a simply connected region and $z=z_{0}$ is an interior point of C, prove that $\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)} d z=f\left(z_{0}\right)$.
b) Evaluate $\int_{C} \frac{z}{\left(z^{2}+1\right)\left(z^{2}-9\right)} d z$, where C is the circle $|z|=2$.

OR
7. a) State and prove fundamental theorem of algebra.
b) If C is the circle with centre ' a ' and radius ' r ' then show that
i) $\int_{C} \frac{1}{(z-a)} d z=2 \pi i$
ii) $\oint_{c}(z-a)^{n} d z=0$, if $n \neq-1$.
8. a) Discuss the transformation $\omega=\sin z$.
b) Show that the bilinear transformation preserves the cross ratio of four points.
OR
9. a) Find the bilinear transformation which maps $0, i, \infty$ onto $1,-i,-1$.
b) Show that $W=\frac{2 z+3}{z-4}$ maps the circle $x^{2}+y^{2}-4 x=0$ onto the straight line $4 u+3=0$.

PART - C

Answer two full questions.
10 a) Find the real root of $x e^{x}-2=0$ by using Regula - Falsi method correct to three decimal places in $(0,1)$.
b) Using Newton-Raphson's method, find the cube root of 37 .
OR

11 a) Solve $10 x+y+z=12 ; 2 x+10 y+z=13 ; 2 x+2 y+10 z=14$ by Jacobi iteration method.
b) By using power method, find the largest eigenvalue of the matrix $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7\end{array}\right]$ given $x_{0}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ in five steps.

12 a) Using Taylor's series method, find the solution of $\frac{d y}{d x}=x-y^{2}, y(0)=1$ at $x=0.2$.
b) Solve $\frac{d y}{d x}=x+y$ with $x_{0}=0, y_{0}=1$ for $x=0(0.05) 0.05$ using Euler's modified method.
OR

13 a) Find the approximate solution at $x=1.2$ of the equation $\frac{d y}{d x}=x y$, given $y(1)=2$ by Runge Kutta method by taking $h=0.2$.
b) Solve $\frac{d y}{d x}=1+\frac{y}{x}$ with $y(1)=2$, find $y(1.4)$ taking $h=0.4$ by Euler's modified method.

