Instruction : Answer all Parts.

PART - A

I. Answer any five questions :

1) Evaluate $\lim _{z \rightarrow 3 i} \frac{2 z+5}{z^{2}-2 z+3}$.

2) Show that $|z-(2+3 i)| \leq 5$ represents a circle.
3) Prove that $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic.
4) Define bilinear transformation.
5) State Liouville's theorem.
6) If $f(z)$ is differentiable at $z=z_{0}$ then prove that $f(z)$ is continuous at $z=z_{0}$.
7) Find the real root of the equation $x^{3}-2 x-5=0$ in $(2,3)$ in one step by using Regula-Falsi method.
8) Write Newton-Raphson iterative formula.
PART - B
II. Answer any four questions :
9) Prove that $|z-1|^{2}+|z+1|^{2}=4$ represents a circle and find its centre and radius.
10) Derive the Cauchy-Reimann equations in the form $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial u}{\partial \theta}=r \frac{\partial v}{\partial r}$.
11) Prove that $f(z)=\log z$ is analytic and hence $f^{\prime}(z)=\frac{1}{z}$.
12) Show that $u=x^{3}-3 x y^{2}$ is harmonic and find its harmonic conjugate.
13) Find the orthogonal trajectories of the family of the curves $e^{-x} \cos y+x y=c$.
14) If $f(z)=u+i v$ is analytic, then prove that $\left[\frac{\partial}{\partial x}|f(z)|\right]^{2}+\left[\frac{\partial}{\partial y}|f(z)|\right]^{2}=\left|f^{\prime}(z)\right|^{2}$.
PART - C
III. Answer any four questions :
15) Evaluate $\int_{c}\left(2 y+x^{2}\right) d x+(3 x-y) d y$ along the curve $x=2 t$ and $y=t^{2}+3$ where $0 \leq t \leq 1$.
16) State and prove Cauchy's integral theorem.
17) Evaluate $\int_{C} \frac{e^{z} d z}{(z-1)(z-2)}$ where C is the curve $|z|=3$.
18) State and prove fundamental theorem of algebra.
19) Prove that $w=\frac{1}{z}$ transforms a circle to circle or to a straight line.
20) Find the bilinear transformation which maps $z=0,1, \infty$ onto $w=1,-i,-1$.
PART - D
IV. Answer any four questions:
21) Using Bisection method to find a real root of the equation $x^{3}-4 x+9=0$ correct to three decimal places.
22) Solve $10 x+y+z=12,2 x+10 y+z=13$ and $2 x+2 y+10 z=14$ by Gauss Jacobi method.
23) By using Power method, find the largest eigenvalue of the method $A=\left[\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$ given $X_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
24) Using Taylor's series method find y at $x=0.2$ considering the terms upto fourth degree, given $\frac{d y}{d x}=x-y^{2}$ with $y(0)=1$.
25) Find the solution of $\frac{d y}{d x}=x+y$ with $y(0)=1$ for $x=0.1$ using Euler's modified method.
26) Solve $\frac{d y}{d x}=x y$ given $y(1)=2$ at $x=1.2$ by using Runge-Kutta method taking $h=0.2$.
