VI Semester B.A./B.Sc. Examination, August/September 2023 (CBCS) (F+R) (2016 – 17 and Onwards) **MATHEMATICS - VII**

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all Parts.

PART - A

Answer any five questions.

 $(5 \times 2 = 10)$

- 1. a) In a Vector Space V over the field F, show that $(-a) \cdot \alpha = -(a \cdot \alpha) \ \forall \ a \in F$, $\alpha \in V$.
 - b) Show that $W = \{(0, 0, z) | z \in R\}$ is a subspace of $V_3(R)$.
 - c) Show that the vectors $\alpha_1 = (1, 1, 0)$, $\alpha_2 = (1, 1, 0)$ and $\alpha_3 = (1, 0, 0)$ are linearly independent.
 - d) If T : $V_2 \rightarrow V_2$ defined by T(x, y) = (x + y, y), then show that T is a linear transformation.
 - e) Write scalar factors in cylindrical co-ordinate system.
 - f) Solve $\frac{dx}{zx} = \frac{dy}{vz} = \frac{dz}{xv}$
 - g) Form a partial differential equation by eliminating arbitrary constants from $z = (x - a)^{2} + (y - b)^{2}$.
 - h) Solve $p^2 + q^2 = 1$.

PART - B

Answer two full questions.

 $(2 \times 10 = 20)$

- 2. a) Prove that the intersection of any two subspaces of a vector space V(F) is also a subspace of V. But the union of two subspaces of vector space V(F) need not to be subspace of V. Justify.
 - b) State and prove the necessary and sufficient condition for a non-empty subset W of a vector space V(F) to be a subspace of V.

OR

- 3. a) Show that the vector (3, -7, 6) is a linear combination of the vectors (1, -3, 2), (2, 4, 1) and (1, 1, 1).
 - b) In a n-dimensional vector space V(F), prove that
 - i) any (n + 1) elements of V are linearly dependent.
 - ii) No set of (n-1) elements can span V.
- 4. a) State and prove rank-nullity theorem.
 - b) Show that the linear transformation $T: R^3 \to R^3$ given by $T(e_1) = e_1 + e_2$, $T(e_2) = e_1 e_2 + e_3$, $T(e_3) = 3e_1 + 4e_3$ is non-singular where $\{e_1, e_2, e_3\}$ is the standard basis of R^3 .

OR

- 5. a) Find the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1, 1) = (0, 1, 2) and T(-1, 1) = (2, 1, 0).
 - b) Find the matrix of linear transformation $T: V_3(R) \rightarrow V_2(R)$ defined by T(x, y, z) = (x + y, y + z) relative to basis $B_1 = \{(1, 1, 1), (1, 0, 0), (1, 1, 0)\}$ and $B_2 = \{e_1, e_2\}$ of $V_3(R)$ and $V_2(R)$ respectively.

Answer two full questions.

 $(2 \times 10 = 20)$

- 6. a) Verify the condition of integrability and solve 2yzdx + zxdy xy(1 + z)dz = 0.
 - b) Solve (y z)p + (z x)q = x y.

OR

- 7. a) Show that cylindrical system is orthogonal curvilinear co-ordinate system.
 - b) Express the vector $\vec{f} = z\hat{i} 2x\hat{j} + y\hat{k}$ in terms of spherical co-ordinates and find f_r , f_θ , f_ϕ .
- 8. a) Solve $\frac{dx}{mz ny} = \frac{dy}{nx lz} = \frac{dz}{ly mx}$.
 - b) Solve $\frac{dx}{x^2 yz} = \frac{dy}{y^2 zx} = \frac{dz}{z^2 xy}.$

- 9. a) Express $\vec{f}=2x\hat{i}-2y^2\hat{j}+xz\hat{k}$ in cylindrical co-ordinates system and find f_ρ,f_ϕ,f_z .
 - b) Express $\vec{f} = z\hat{i} 2x\hat{j} + y\hat{k}$ in the form of spherical polar co-ordinates and find f_r , f_θ , f_ϕ .

PART - D

Answer two full questions.

 $(2 \times 10 = 20)$

- 10. a) Form partial differential equation by eliminating arbitrary function from $|x + my + nz| = \phi(x^2 + y^2 + z^2)$.
 - b) Solve x(1 + y)p = y(1 + x)q.

OR

- 11. a) Solve $(D^2 + DD' 6(D')^2)z = \cos(2x + y)$
 - b) Solve $z^2(p^2z^2 + q^2) = 1$.
- 12. a) Solve px + qy = pq by Charpit's method.
 - b) Solve $(D^2 DD' 6(D')^2)z = xy$.

OR

- 13. a) Solve $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$ given that
 - i) u(0, t) = 0, u(l, t) = 0 for all $t \ge 0$ and
 - ii) $u(x, 0) = f(x), \sqrt{\frac{\partial u}{\partial t}}_{(x, 0)} = \phi(x)$ for 0 < x < 1.
 - b) Solve $\frac{\partial u}{\partial t} = 16 \frac{\partial^2 u}{\partial x^2}$ given that
 - i) u(0, t) = 0, u(1, t) = 0
 - ii) $u(x, 0) = x^2 x, 0 \le x \le 1$.