VI Semester B.A./B.Sc. Examination, August/September 2023 (CBCS) (2016-17 and Onwards) (Repeaters)
 MATHEMATICS - VIII

Time : 3 Hours
Max. Marks : 70
Instruction : Answer all Parts.

PART - A

1. Answer any five questions.
a) Evaluate $\lim _{z \rightarrow 1+2 i}\left(z^{2}+1\right)$.
b) Show that $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic.
c) Find the locus of z satisfying $|z-1| \leq 2$.

d) State Liouville's theorem.
e) Verify Cauchy-Reimann equations for $f(z)=\sin z$.
f) State Fundamental theorem of algebra.
g) Find the real root of the equation $x^{3}-4 x+9=0$ in one step by bisection method.
h) Using Newton-Raphson method, find the real root of $x^{3}-2 x-5=0$ in one iteration only.
PART - B

Answer four full questions.
2. a) Show that the locus of $\arg \left(\frac{\bar{z}}{z}\right)=\frac{\pi}{2}$ is a line through the origin.
b) State and prove necessary conditions for a function $f(z)=u+i v$ to be analytic.

OR
3. a) Evaluate $\lim _{z \rightarrow 2 e / 3}\left(\frac{z^{3}+8}{z^{4}+4 z^{2}+16}\right)$.
b) Show that $f(z)=\log z$ is analytic and find $f^{\prime}(z)$.
4. a) If $f(z)=u+i v$ is analytic, show that $\left[\frac{\partial}{\partial x}|f(z)|\right]^{2}+\left[\frac{\partial}{\partial y}|f(z)|\right]^{2}=\left|f^{\prime}(z)\right|^{2}$.
b) Prove that $u=y^{3}-3 x^{2} y$ is a harmonic function and find its harmonic conjugate.

OR
5. a) Find the orthogonal trajectories of the family of curves $2 e^{-x} \sin y+x^{2}-y^{2}=C$.
b) If $f(z)=u+i v$ and $u-v=e^{x}$ (cosy $-\sin y$), find $f(z)$ in terms of z.
6. a) Evaluate $\int_{(0,1)}^{(2,5)}(3 x+y) d x+(2 y-x) d y$ along the curve $y=x^{2}+1$.
b) State and prove Cauchy's integral formula.

OR
7. a) Evaluate $\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$ where $C:|z|=3$.
b) Evaluate $\int_{C} \frac{d z}{z^{2}-4}$ over $C:|z+2|=1$.
8. a) Find the bilinear transformation which map the points $z=1, i,-1$ into $w=2, i,-2$.
b) Show that the transformation $w=\frac{i-z}{i+z}$ maps the x-axis of the z-plane onto a circle $|w|=1$ and the points in the half plane $y>0$ on the points $|w|<1$. OR
9. a) Prove that the Bilinear transformation preserves the cross ratio of four points.
b) Discuss the transformation $w=\sin z$.

PART - C

Answer two full questions.
$(2 \times 10=20)$
10. a) Find the root of the equation $f(x)=x^{3}-4 x+1$ by Regula-Falsi method upto three decimal places.
b) Using Newton-Raphson method, find the real root of equation $x^{4}-x-10=0$ which is near to $x=2$ correct to 3 decimal places.

OR
11. a) Solve by Gauss-Jacobi method $10 x+2 y+z=9, x+10 y-z=-22$, $-2 x+3 y+10 z=22$.
b) Find the largest eigen value of the matrix $A=\left[\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right]$ by power method.
12. a) Find y at $x=0.1$ correct to 4 decimal places, given $\frac{d y}{d x}=x-y^{2}, y(0)=1$ applying Taylor's series method upto fourth degree term.
b) Using Euler's method, solve $\frac{d y}{d x}=x+y, y(0)=1$ for $x=0.0(0.2) 1.0$. OR
13. a) Using modified Euler's method, find $y(0.1)$ given $\frac{d y}{d x}=x^{2}+1, y(0)=1$.
b) Using Runge-Kutta method find $y(0.2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x}$ with $y(0)=1$ taking $\eta_{t}=0.2$

