CS – 164

73 V Semester B.A./B.Sc. Examination, March 2023 (CBCS) (2016 – 2017 and Onwards) (F+R) MATHEMATICS – V

Time : 3 Hours

Instruction : Answer all questions.

Max. Marks: 70

 $(5 \times 2 = 10)$

- 1. Answer any five questions :
 - a) In a ring (R, +, .) show that $a \cdot (-b) = (-a) \cdot b = -(a \cdot b) \forall a, b \in R$.
 - b) Define field. Give an example.
 - c) Prove that every field is a principal ideal ring.
 - d) Find the divergence of the vector field. $\vec{F} = x^3 z \hat{i} + y^3 x \hat{j} + z^3 v \hat{k}$ at (1, 1, -1).
 - e) Find the maximum directional derivative of x sinz y cosz at (0, 0, 0).
 - f) Prove that $E\nabla = \nabla E = \Delta$.

g) Evaluate
$$\Delta^{10}$$
 (1 – ax) (1 – bx²) (1 – cx³) (1 – dx⁴).

h) State Simpson's $\frac{3}{8}^{th}$ rule for the integral $\int_{a}^{b} f(x) dx$.

PART – B

Answer two full questions :

- 2. a) Prove that the intersection of any two subrings is a subring. Give an example to show that the union of 2 subrings of a ring need not be a subring.
 - b) Prove that $(Z_5, +_5, x_5)$ is a ring w.r.t. $+_5$ and x_5 .

OR

(2×10=20)

P.T.O.

- 3. a) Prove that every field is an integral domain.
 - b) Show that the set of all real numbers of the form $a + b\sqrt{2}$, where a and b are integers is a ring w.r.t. addition and multiplication.
- 4. a) If $f : R \to R'$ be a homomorphism and onto then prove that f is one-one iff ker $f = \{0\}$.
 - b) Prove that the set $S = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \middle/ a, b \in Z \right\}$ of all 2 × 2 matrices is a left ideal of the ring R over Z. Also show that S is not a right ideal. OR
- 5. a) State and prove fundamental theorem of homomorphism of rings.
 - b) Find all the principal ideals of the ring R = {0, 1, 2, 3, 4, 5, 6, 7} w.r.t. \oplus_8 and \otimes_8 .

Answer any two full questions :

- 6. a) Find the directional derivative of $\phi(x, y, z) = x^2 y^2 + 4z^2$ at the point (1, 1, -8) in the direction of $2\hat{i} + \hat{j} \hat{k}$.
 - b) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 + z^2 = 3$ at the point (2, -1, 2).

OR

- 7. a) Prove that $\nabla^2 r^n = n(n + 1) r^{n-2}$ where n is a non zero constant. Also deduce that r^n is harmonic if n = -1.
 - b) If the vector $\vec{F} = (ax + 3y + 4z)\hat{i} + (x 2y + 3z)\hat{j} + (3x + 2y z)\hat{k}$ is solenoidal then find a.
- 8. a) If ϕ is a scalar point function and \vec{F} is a vector point function. Then prove that div $(\phi \vec{F}) = \phi(\text{div } \vec{F}) + \nabla \phi \cdot \vec{F}$.
 - b) Show that $\vec{F} = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational, find ϕ such that $\vec{F} = \nabla \phi$.

OR

 $(2 \times 10 = 20)$

9. a) Prove that

1) curl F is solenoidal

2) grad ϕ is irrotational.

b) Prove that
$$\nabla^2 f(r) = f''(r) + \frac{2}{r}f'(r)$$
 where $r^2 = x^2 + y^2 + z^2$.

Answer two full questions :

10. a) By the separation of symbols, prove that

$$u_0 + \frac{u_1}{1!} + \frac{u_2 x^2}{2!} + \dots \infty = e^x \left| u_0 + \frac{x \Delta u_0}{1!} + \frac{x^2 \Delta^2 u_0}{2!} + \dots \infty \right| \cdot$$

b) Obtain the function whose first difference is $6x^2 + 10x + 11$.

OR

11. a) From the following data find θ at x = 84 using difference table.

x	40	50	60	70	80	90
θ	184	204	226	250	276	304

- b) Express 3x³ 4x² + 3x 11 in factorial notation. Also express its successive difference in factorial notation.
- 12. a) Prepare divided difference table for the following data.

	x	1	3	4	6	10
	f(x)	0	18	58	190	920
b)	Evaluate	$\int_{0}^{6} \frac{1}{1+2}$	$\frac{1}{\sqrt{2}}$ dx by	using S	Simpson	's $\frac{3}{8}^{\text{th}}$ rule.
		OF	3			

13. a) By using Lagrange's Interpolation formula, find f(10) from the following data.

X	5	6	9	11
f(x)	12	13	14	16

b) Evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by taking 6 sub intervals by using Simpson's $\frac{1}{3}^{rd}$ rule.

 $(2 \times 10 = 20)$