12

Il Semester B.Sc. Examination, July/August 2024 (NEP Scheme) MATHEMATICS

DSC - 2.1 : Algebra - II and Calculus - II

Time: 21/2 Hours

Max. Marks: 60

Instruction : Answer all Parts.

PART - A

 $(4 \times 2 = 8)$

- I. Answer any four of the following.
 - 1) Define a subgroup. Give an example.
 - 2) If A = {1, 2, 3} and f = $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$, g = $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$, find (gof)⁻¹.
 - 3) Verify whether $f:(R, +) \to (R, +)$ defined as $f(x) = 2x + 1 \ \forall \ x \in R$ is a homomorphism or not ?
 - 4) If u = xy + yz + zx, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = x + y + 2z$.
 - 5) Show that $f(x, y) = x^3 + y^3 3xy + 1$ is minimum at the point (1, 1).
 - 6) Evaluate $\int_{0}^{1} \int_{0}^{2} xy^{2} dx dy$.

PART - B

II. Answer any four of the following.

 $(4 \times 5 = 20)$

- 7) Prove that order of every element of a finite group is finite.
- 8) Find all right and left cosets of the subgroup $H = \{0, 3\}$ in $(Z_e, +_6)$.
- 9) Prove that a subgroup H of a group G is normal in G if and only if $gHg^{-1} = H \ \forall \ g \in G$.
- 10) State and prove Euler's theorem for homogeneous function of degree n.

- 11) Evaluate $\int_{C} [(x+y)dx + (y-x)dy]$ along the curve $x = 2t^2 + t + 1$, $y = t^2 + 1$ where $0 \le t \le 1$.
- where $u \le t \le 1$. 12) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration.

III. Answer any four of the following.

 $(4 \times 8 = 32)$

- 13) Define cyclic group. Prove that every subgroup of a cyclic group is cyclic.
- 14) Define homomorphism. Verify whether $f:(Z, +) \to (2Z, +)$ defined as $f(x) = 2x \ \forall \ x \in Z$ is an isomorphism. Also find Kernel, if it is a homomorphism.
- 15) State and prove fundamental theorem of homomorphism.
- 16) If $u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.
- 17) Expand $f(x, y) = e^x \cos y$ by Maclaurin's series in powers of x and y as far as third degree.
- 18) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} \int_{0}^{\sqrt{a^2-x^2-y^2}} \frac{\sqrt{a^2-x^2-y^2}}{\sqrt{a^2-x^2-y^2-z^2}}$. In the first value of $\sqrt{a^2-x^2-y^2-z^2}$. The value of $\sqrt{a^2-x^2-y^2-z^2}$.

6) Evaluate | vy²dxdy-

II. Answer any four of the following

B-THAG

Prove that order of every element of a finite order is levite

8) Find all right and 1-th cosets of the subgroup $H = \{0, 3\}$ in $(Z_+, +)$

S) Prove that a subgroup H of a group G is cormat in G if and only if

 $\mathbf{O} + \mathbf{O} = \mathbf{H} \vee \mathbf{O} \in \mathbf{G}.$

10) State and prove Euler's theorem for nomogeneous function of degree n