

VI Semester B.Sc. Examination, July/August 2024 (NEP)

STATISTICS

STS 601: Analysis of Variance and Design of Experiments

Time: 21/2 Hours

Max. Marks: 60

- **Instructions**: i) Scientific calculators are **permitted**.
 - ii) Statistical tables and graph sheets are provided on request.

LIBRAR

Answer any four questions (2 marks each).

- 1. Define ANOVA and mention its assumptions.
- 2. What do you mean by mixed effect model?
- 3. Define the term experiment.
- 4. Provide the mathematical linear model for two-way ANOVA with usual notations.
- 5. Define BIBD.
- 6. What do you mean by complete confounding?

PART - B

Answer any four questions (5 marks each):

 $(4 \times 5 = 20)$

- 7. Explain:
 - i) Random effect model.
 - ii) Fixed effect model.
- 8. Provide the estimates of parameters of CRD mathematical model, using least squares method.

NP - 239

- 9. Deduce the sum of squares of RBD using partitioning method.
- 10. Explain the main and interaction effects in 2² factorial experiment.
- 11. Explain the Yate's method of computing factorial effect totals.
- 12. Explain the procedure of analysis of 2² factorial experiment using Yate's method.

bajit re-PART - C tuoteo pilite etc? (1.1. apolitouritant

Answer any four questions (8 marks each):	(4×8=32)
13. Provide the analysis of two-way classification without interaction.	8
14. Explain the analysis of RBD with single missing observation.	8
15. Explain the analysis of Latin Square Design (LSD).	8
16. a) Define the parameters of BIBD and incidence matrix. b) Prove that $\lambda(t-1)=r(k-1)$.	
17. Explain the procedure of analysis of 2 ³ factorial experiment.	8 Daine t
18. Provide the analysis of 2 ² factorial experiment by assuming a complete confounding in r-replicates.	• Froyrde 8